BIRC Talks

Virtual Talk: Daniel Ansari, University of Western Ontario

Daniel Ansari, PhD

University of Western Ontario

Wednesday, April 1st from 1:00-2:15 pm EST via Zoom

**Register here for Zoom using your university/institution email address**

Abstract:

Humans share with animals the ability to process numerical quantities in non-symbolic formats (e.g., collections of objects). Unlike other species, however, over cultural history, humans have developed symbolic representations (such as number words and digits) to represent numerical quantities exactly and abstractly. These symbols and their semantic referents form the foundations for higher-level numerical and mathematical skills. It is commonly assumed that symbols for number acquire their meaning by being mapped onto the pre-existing, phylogenetically ancient system for the approximate representation of non-symbolic number over the course of learning and development. In this talk I will challenge this hypothesis for how numerical symbols acquire their meanings (“the symbol grounding problem”). To do so, I will present a series of behavioral and neuroimaging studies with both children and adults that demonstrate that symbolic and non-symbolic processing of number is dissociated at both the behavioral and brain levels of analysis. I will discuss the implications of these data for theories of the origins of numerical symbol processing and its breakdown in children with mathematical learning disorders, such as Developmental Dyscalculia.

Bio: Daniel Ansari received his PhD from University College London in 2003. Presently, Daniel Ansari is a Professor and Canada Research Chair in Developmental Cognitive Neuroscience in the Department of Psychology and the Brain & Mind Institute at the University of Western Ontario in London, Ontario, where he heads the Numerical Cognition Laboratory (www.numericalcognition.org). Ansari and his team explore the developmental trajectory underlying both the typical and atypical development of numerical and mathematical skills, using both behavioral and neuroimaging methods.

Click here to see the full BIRC Speaker Series schedule and access recordings of past talks.

Talk: David Badre, Brown University

Tuesday, March 3rd from 1:30-3:00 pm in Arjona 307

Abstract:

This talk will describe an on-going line of research in our lab investigating the cognitive and neural systems that support hierarchical cognitive control, or our ability to simultaneously control immediate actions while also holding more abstract, temporally remote goals in mind. Psychologists have long proposed that we have a capacity for hierarchical control, citing its potential contributions to sequential behavior, as well as higher-order planning, reasoning, and abstraction. Despite its importance for cognition, the cognitive and neural mechanisms that support hierarchical control remain unknown. Here I will provide a line of evidence suggesting that this type of complex control partly depends on gating of working memory by cortico-striatal circuits. In this light, I will discuss on-going efforts to develop fMRI methods that can characterize the dimensionality of neural representations in the prefrontal cortex that support complex task control.

Bio:David Badre received his Ph.D. from the Department of Brain and Cognitive Sciences at MIT in 2005. Following a postdoctoral fellowship at the University of California, Berkeley, he joined Brown’s Department of Cognitive, Linguistic, and Psychological Sciences as Assistant Professor in 2008 and was subsequently promoted to Associate Professor in 2014 and then Professor in 2019. He is also an affiliate of the Carney Institute for Brain Science and a trainer in the Neuroscience Graduate Program. His lab at Brown focuses on the cognitive neuroscience of memory and cognitive control with an emphasis on frontal lobe function and organization. Dr. Badre serves on the editorial boards of Psychological Science, Cognitive Science, and Behavioral Neuroscience.  He served as Section Editor covering “Executive Function and Cognitive Control” for Neuropsychologia until 2017. Presently, he serves on the Board of Reviewing Editors for the journal eLife, and he is a standing member of the Cognition and Perception study section of NIH. His research is supported by NINDS and NIMH at the NIH, and through the Office of Naval Research. His work has been recognized by several awards, including an Alfred P. Sloan Foundation Fellowship in Neuroscience, a James S. McDonnell Scholar Award in Understanding Human Cognition, and the Cognitive Neuroscience Society Young Investigator Award. His book on the neuroscience of cognitive control, entitled On Task: How the brain gets things done, will be published in November, 2020 through Princeton University Press.

**Register here for Webex**

Please email birc@uconn.edu if you are interested in meeting with a speaker. Click here to see the full BIRC Speaker Series schedule and access recordings of past talks.

Talk: Katarzyna Chawarska, Yale University

Tuesday, February 4th from 1:30-3:00 pm in Arjona 307

Abstract:The lecture will address selected facets of social and emotional development during prodromal and early syndromal stages of Autism Spectrum Disorder and their links with later outcomes amongst children with ASD and their siblings. Recent efforts in fetal and neonatal neuroimaging  to understand underlying mechanisms will be briefly mentioned.

Bio: Dr. Katarzyna Chawarska is Emily Fraser Beede Professor of Child Psychiatry, Pediatrics, and Statistics and Data Science and the Director of the Social and Affective Neuroscience of Autism Program and the Yale Autism Center of Excellence Program at the Child Study Center, Yale School of Medicine.  Her research focuses on identifying early markers of core and co-morbid symptoms in children with Autism Spectrum Disorder (ASD) and related conditions.  She has served as the Chair of the Baby Sibling Research Consortium, and a Board member of the International Society for Autism Research. She is a principal investigator on numerous federally and privately funded grants as well as the lead author on multiple publications and book chapters. In her clinical practice, Dr. Chawarska specializes in early diagnosis of ASD as well as developmental follow-up of infants at risk for ASD due to familial, genetic factors, or due to prenatal or perinatal complications such as premature birth.  She is also committed to training of the next generation of clinicians and researchers in the field of developmental disabilities as well as promoting early detection of ASD both nationally and internationally.

**Register here for Webex**

Please email birc@uconn.edu if you are interested in meeting with a speaker. Click here to see the full BIRC Speaker Series schedule and access recordings of past talks.

Talk: Kimberly Noble, Columbia University

Tuesday, December 3rd from 1:30-3:00 pm in Arjona 307

Abstract: Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Recent work has focused on understanding the neurobiological pathways through which socioeconomic factors shape development. Behavioral evidence suggests that language, memory, social-emotional skills, and executive functions exhibit relatively large differences across socioeconomic lines, and more recent work has found differences in socioeconomic differences in brain structure in the very regions that support these skills. It is likely that socioeconomic factors operate via multiple mechanisms to explain the development of different neural circuits. A theoretical model will be presented whereby differences in the home language environment and family stress likely impact particular brain systems, which in turn support distinct neurocognitive skills. Evidence for the model, as well as ongoing and future work testing aspects of the model, will be discussed. Finally, the question of interventions will be addressed, along with an overview of Baby’s First Years, the first clinical trial of poverty reduction in early childhood.

Bio:Kimberly Noble, MD, PhD, is an Associate Professor of Neuroscience and Education at Teachers College, Columbia University. She received her undergraduate, graduate and medical degrees at the University of Pennsylvania. As a neuroscientist and board-certified pediatrician, she studies how socioeconomic inequality relates to in children’s cognitive and brain development.  Her work examines socioeconomic disparities in cognitive development, as well as brain structure and function, across infancy, childhood and adolescence. She is particularly interested in understanding how early in infancy or toddlerhood such disparities develop; the modifiable environmental differences that account for these disparities; and the ways we might harness this research to inform the design of interventions. She is one of the principal investigators of the Baby’s First Years study: the first clinical trial of poverty reduction to assess the causal impact of income on children’s cognitive, emotional and brain development in the first three years of life. Dr. Noble was elected a Fellow of the Association for Psychological Science, and was awarded a 2017 Association for Psychological Science Janet Taylor Spence Award for Transformative Early Career Contributions. Her work linking family income to brain structure across childhood and adolescence has received worldwide attention in the popular press.

**Register here for Webex**

Please email birc@uconn.edu if you are interested in meeting with a speaker. Click here to see the full BIRC Speaker Series schedule and access recordings of past talks.

Talk: Stephanie Jones, Brown University

Brown University

Tuesday, November 5th from 1:30-3:00 pm in Arjona 307

Abstract: EEG and MEG are the leading methods to non-invasively record human neural dynamics with millisecond temporal resolution. However, it can be extremely difficult to infer the underlying cellular and circuit level origins of these macro-scale signals without simultaneous invasive recordings. This limits the translation of EEG/MEG into novel principles of information processing, or into new treatment modalities for neural pathologies. To address this need, we developed the Human Neocortical Neurosolver (HNN: https://hnn.brown.edu), a new user-friendly neural modeling tool designed to help researchers and clinicians interpret human imaging data. In this talk, I will give an overview of this new tool and describe an application to study the origin and meaning of 15-29Hz beta frequency oscillations, known to be important for sensory and motor function. I will also touch on other applications of HNN to study the mechanistic origin of functionally relevant human EEG/MEG and modulation in these signals with non-invasive brain stimulation. In total, HNN provides an unpresented biophysically principled tool to link mechanism to meaning of human EEG/MEG signals.

Bio: Stephanie R. Jones, PhD is Associate Professor in the Department of Neuroscience at Brown University. She received her doctorate in mathematics from Boston University, followed by training in neuroscience and human MEG/EEG at Massachusetts General Hospital. Her research program integrates these disciplines to develop biophysically principled computational neural models that bridge the critical gap between human MEG/EEG brain imaging signals and their underlying cellular and network level generators. Dr. Jones’s group is currently expanding their interdisciplinary program to the field of non-invasive brain stimulation. A primary goal is to translate an understanding of the network mechanism underlying non-invasively measured brain signals into brain stimulation strategies to improve disrupted brain function.

**To view this talk remotely via Webex, please register hereby October 29th**

Please email birc@uconn.edu if you are interested in meeting with a speaker. Click here to see the full BIRC Speaker Series schedule and access recordings of past talks.

Talk: Uri Hasson, Princeton University

Uri Hasson, PhD

Princeton University

Tuesday, October 15th from 1:30-3:00 pm in Arjona 307

Abstract: Cognition materializes in an interpersonal space. At present, little is known about the neural substrates that underlie our ability to communicate with other brains in naturalistic settings. In the talk I will introduce novel methodological and analytical tools for characterizing the neural responses during production and comprehension of complex real-life speech. By directly comparing the neural activity timecourses during production and comprehension of the same narrative, we were able to identify areas in which the neural activity is correlated (coupled) across the speaker’s and listener’s brains during communication. Furthermore, the listener brain activity mirrors that of the speaker with a constant delay of three seconds. This mirroring was eliminated when the communication signals were misaligned. Finally, the stronger the speaker- listener coupling the greater listener comprehension. We argue that the observed coupling of production and comprehension-based processes serves as a mechanism by which brains convey information.

Bio: Uri Hasson grew up in Jerusalem. As an undergrad he studied philosophy and cognitive sciences at the Hebrew University. He completed his Ph.D. in Neurobiology at the Weizmann Institute in Israel and was a postdoctoral fellow at NYU before moving to Princeton. He is currently a Professor in the Psychology Department and the Neuroscience Institute at Princeton University. His research program aims to understand the neural basis of face-to-face, brain-to-brain, social interaction, with a focus on verbal communication and storytelling in real-life contexts.

**To view this talk remotely via Webex, please register here by October 8th**

Please email birc@uconn.edu if you are interested in meeting with a speaker. Click here to see the full BIRC Speaker Series schedule and access recordings of past talks.

Talk: Tor Wager, Dartmouth College

Tor Wager, PhD

Dartmouth College

Tuesday, September 10th from 1:30-3pm in Arjona 3o7

Abstract: Pain and emotion are central to human life. Their experience defines our wellbeing, and the brain processes that underlie them drive behavior and learning. Developing models of the brain systems that generate pain and emotion could transform how we understand their neurophysiological origins, and how we understand interventions ranging from drugs to psychotherapy. However, developing such models will require computational advances, particularly in our ability to model how emergent properties like pain arise from complex interactions among brain systems. In this talk, I describe an approach and a series of studies aimed at constructing models of pain and other forms of affect with high neuroscientific interpretability, predictive validity, and reproducibility. Combining fMRI with machine learning techniques, we have developed brain models capable of predicting the intensity of pain, negative affect, empathy, autonomic activity, and other subjective experiences in individual participants. In addition to utility as biomarkers and targets for both psychological and drug interventions, these models can provide insight into how the brain represents multiple varieties of affective experience. 

Bio: Tor Wager is the Diana L. Taylor Distinguished Professor in Neuroscience at Dartmouth College. He received his Ph.D. from the University of Michigan in Cognitive Psychology in 2003, and served as an Assistant (2004-2008) and Associate Professor (2009) at Columbia University, and as Associate (2010-2014) and Full Professor (2014-2019) at the University of Colorado, Boulder. Since 2004, he has directed the Cognitive and Affective Neuroscience laboratory, a research lab devoted to work on the neurophysiology of affective processes—pain, emotion, stress, and empathy—and how they are shaped by cognitive and social influences. Dr. Wager and his lab are also dedicated to developing analysis methods for functional neuroimaging and sharing ideas, tools, and scientific data with the scientific community and public. See http://wagerlab.colorado.eduand http://canlab.github.iofor papers, data, tools, and code.

**To view this talk remotely via Webex, please register here by September 3rd**

Please email birc@uconn.edu if you are interested in meeting with a speaker. Click here to see the full BIRC Speaker Series schedule and access recordings of past talks.

Talk: Michele Diaz, Penn State

Michele Diaz, Ph.D.

Pennsylvania State University

Wednesday, May 1st from 1:30-2:30 in Arjona 307

Abstract: Although decline in cognitive functions is often observed with aging, language functions show a pattern of both impaired and spared performance. Semantic processes, such as vocabulary, are well maintained throughout adulthood. In contrast, older adults show impairments in phonological aspects of language production such as in increased slips of the tongue and increased pauses during speech. This asymmetric pattern suggests a fundamental difference in the cognitive and neural organization of these two language abilities. In this talk, I will discuss our work which has looked at semantic and phonological decisions, as well as more recent work that has examined inherent aspects of words, such as phonological and semantic neighborhood densities. Our work examines how cognition, behavior, and neural factors relate to each other and how they contribute to language function in healthy younger and older adults.

Bio: Professor Michele Diaz, PhD is currently Associate Professor of Psychology and Linguistics as well as Director of Human Imaging, at the Social, Life, & Engineering Sciences Imaging Center (SLEIC) at Pennsylvania State University. Previously, she has used electrophysiology to examine how semantic and phonological processes interact during spoken language comprehension. Using functional Magnetic Resonance Imaging (fMRI), she has investigated the neural substrates of orthographic, lexical, and semantic aspects of visual word processing, and the influence of conscious perception on the engagement of brain regions that support these processes. Finally, her involvement with the Biomedical Informatics Research Network (BIRN) project has allowed her to explore technical issues related to multi-site imaging, such as quality assurance measures and reliability. This experience facilitates her current role as the Director of Human Imaging at the Social, Life, and Engineering Sciences Imaging Center. 

Visitors from UCHC are encouraged to use the UCHC-Storrs shuttle service. Talks can also be joined remotely. Please contact us if you are interested in meeting with the speaker.

 

 

Talk: Dr. Theresa Desrochers, Brown University

Theresa M. Desrochers, PhD

Brown University

Wednesday, April 3rd from 1:30-2:30 in Arjona 307

Abstract: Performing sequential tasks such as making your breakfast are an integral part of daily life. The majority of previous studies have focused on motor sequences or non-sequential abstract control, rather than these kinds of more abstract sequential tasks. Our work using high-density multi-electrode chronic recordings in nonhuman primates has shown that an integrated cost-benefit signal in the striatum predicts the acquisition of habitual motor sequences. To move beyond motor sequences and address this gap in our knowledge of more abstract sequential tasks, we asked human participants to repeatedly perform simple four-item sequences of shape and color judgments during fMRI scanning. We found a novel dynamic in the rostrolateral prefrontal cortex (RLPFC), where activation ramped up across the four items in each sequence and reset at the beginning of each new sequence. Transcranial magnetic stimulation (TMS) to RLPFC during the same task selectively produced an increasing pattern of errors as each sequence progressed, mirroring the fMRI activation. Effects in the RLPFC during fMRI and two independent TMS experiments dissociated from two other prefrontal control regions. These results show that RLPFC is necessary for sequential control and resolution of uncertainty during sequence performance. Current work focuses on dissociating some of the processes that underlie sequential task control: task execution, sequential monitoring, and sequence memory. Recent results show that ramping in the RLPFC is robust to changes in sequential stimuli and monitoring conditions, suggesting that these dynamics in the frontal cortex may be a common mechanism for tracking sequential information. New studies are focusing on investigating frontal cortical dynamics during sequential control in parallel nonhuman primate fMRI and multi-electrode recordings.

Bio: Dr. Theresa Desrochers is currently Assistant Professor in the Departments of Neuroscience and Psychiatry & Human Behavior at Brown University. She earned her PhD in Neuroscience from the Massachusetts Institute of Technology in 2011. There she trained with Dr. Ann M. Graybiel and co-developed a new method of performing high-density, reconfigurable recordings on awake-behaving nonhuman primates. For her postdoctoral fellowship, Dr. Desrochers worked with Dr. David Badre at Brown University where she discovered a novel brain dynamic that was necessary for the sequential executive functions. Dr. Desrochers joined the faculty of the Department of Neuroscience at Brown University in the fall of 2016. The Desrochers lab uses human and nonhuman primate models to investigate the neural underpinnings of sequential control. Work in the lab focuses on explicitly addressing these questions using a cross-species approach, which is rare in both human and nonhuman primate research. Current experiments are focused on using nonhuman primate fMRI, a technique that only a few labs are able to use, to explicitly bridge between human fMRI and nonhuman primate neural recordings and directly examine functional homology between the species.

Visitors from UCHC are encouraged to use the UCHC-Storrs shuttle service. Talks can also be joined remotely. Please contact us if you are interested in meeting with the speaker.

Talk: Dr. James V. Haxby, Dartmouth College

James V. Haxby, PhD

Dartmouth College

Distinguished Speaker

Wednesday, February 20 2019 3:30-5:00PM Bousfield A106

Abstract: Multivariate pattern analysis (MVPA) has revealed that information is encoded in finegrained patterns of cortical activity that can be measured with fMRI. Study of cortical functional connectivity also has revealed fine-grained topographies in the connectome that are closely related to these patterns of activity. The surface structure of functional cortical topographies, however, allows considerable variability across brains for encoding the same information. We introduced a new conceptual framework with computational algorithms that make it possible to model the shared information that is encoded in fine-grained functional topographies that vary across brains. This framework, “hyperalignment”, models shared information as a high-dimensional information space, rather than attempting to model a shared or canonical topographic structure in the physical space of cortical anatomy. Hyperalignment is based on computational algorithms that discover this space and calculate transformations that project individually-variable patterns of neural activity and connectivity into the common model information space.

Research Focus: My current research focuses on the development of computational methods for building models of representational spaces. We assume that distributed population responses encode information. Within a cortical field, a broad range of stimuli or cognitive states can be represented as different patterns of response. We use fMRI to measure these patterns of response and multivariate pattern (MVP) analysis to decode their meaning. We are currently developing methods that make it possible to decode an individual’s brain data using MVP classifiers that are based on other subjects’ data. We use a complex, natural stimulus to sample a broad range of brain representational states as a basis for building high-dimensional models of representational spaces within cortical fields. These models are based on response tuning functions that are common across subjects. Initially, we demonstrated the validity of such a model in ventral temporal cortex. We are working on building similar models in other visual areas and in auditory areas. We also plan to investigate representation of social cognition using this same conceptual framework.

 

Visitors from UCHC are encouraged to use the UCHC-Storrs shuttle service. Talks can also be joined remotely. Please contact us if you are interested in meeting with the speaker.